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I. Introduction

This memorandum will discuss the pr : of computing
the smoothed positlon and velocity of an orbiting body as it
passes over a single radar tracking station. Thls problem 1s
different from the usual orbit determination problem, in which
an obJject 1s tracked by many stations and a "best fit" orbit
is made to the data, usually by a form of differentlal cor-
rection scheme (Ref. 1). However, differential correctlon
methods are often not particularly efficilent or accurate for
single-pass data (Ref. 1). The procedure descrlibed here 1s
most effective for the case of the single pass, but 1s not
particularly well adapted to reducing data from a number of
stations. |

An estimate of the accuracy obtalnable for the Apollo
parking orbit 1s shown in Flgure 1, which gilves veloclty error
as a functlon of tracking time, for different ranges to the
satellite. The assumed radar errors are tabulated on the Figure
As 1s typlcal of smoothing techniques, there 1s an optimum

smoothing time which results in minimum error, and using more

or less data at one time than thie aAntdwmam oo
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accuracy. For most caées of interest, the obJéct being
tracked is not above the horizon for the full optimum

perlod. The best poliey then is to track for as long as‘pos—l
sible. Using smoothed data of thls sort would be most effec-
tlve 1f 1t were desirable to obtain a quick estimate of an
orblt from an 1solated tracking station, such as a tracking
ship. Relatively small facilities could be used for the com-~
putations required, and then only either a set of orbital ele-
ments or the position and veloclty vector at one time could
be transmitted to a central station, where the orbit would be
computed.

The basic principle used in the method to be de-
scribed ié to use measured positlion values to compute the
gravitational acceleratlon. The computed accelerations are
then integrated in an inertial coordinate system and sub-
tracted from measured values. The differences are smoothed
in polynominal filters, and the integrated quantilties are
then added in to glve the total smoothed velocity or position.

Errofs in smoothlng arise from radar nolse and
radar blas, but bilas errors enter the smoothed data in two
different ways. Certaln blas errors (azimuth and site loca-
tion, in particular) correspond basically to a rotatlon or

translation of coordinates. Thus velocities will in general
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be computed correctly with respect to the radar if such
blases are present, but directions and locations will be in
error by the amount the radar is in error.‘ It 1s apparent
that measurements from a single radar only cannot remove
errors of this sort. Other bias effects (mainly in range
and elevation) produce erroneous accelerations in the meas-
ured quantities. These accelerations are detected by the
smoothing filters and thelr effects are usually exaggerated.
The blas-caused accelerations produce a dynamic error at the
output of the filter, which tends to 1ncrease with increasing
smoothing time, whilile the nolse error tends to decrease with
increasing smoothing time, Thus there 1s some time for which
the total error is minimized. |

The actual dynamlc errors for any pass depend to a
great degree on the geometry of that particular pass, For
example, whille the gravitational acceleratlon 1s almost con-
stant, it would affect mainly angle measurements for a pass
low on the horizon, but malnly range measurements for a pass
nearly overhead. The problem 1s further compllcated by the
fact that most radars are conslderably more accurate in range
than in angle, In the error analysis, some assumptions are
made to obtain results of reasonable generality, usually in
the naturé of attempting to select a situatlion whose geometry
presents a worst case in a partlicular coordinate, and then

computing the dynamic errors in that coordinate.




II. General Procedure

The basic 1dea of this smoothing procedure, as dis-
cussed in the previous section, 18 to remove nominal effects
by using gravitational accelerations computed from the meas-
ured posltions. The procedure, which 1s also dlagrammed in
Figure 2, 1s described below.

1. Convert the radar tracking data (assumed to be range,
azimuth, and elevation) into an earth-centered, inertial co-
ordinate system,

2, Calculate the direction and magnitude of the gravi-
tatlional acceleration at each point from

_..___—'k—__.
a = = 3 T (1)

where T is the radius vector from the center of the earth to
the polnt in question and k 1s the gravitational constant.
The unsmoothed radar data 1s to be used to compute T.

3. Integrate a numericaliy in the inertlial coordinate
system to get the nominal increment in veloclty from the be-
ginning of the pass.

L, Subtract the computed veloclty increment from first
differences in the measured positlion data.

5. Smooth the resulting differences by means of growlng

veloclty filters (also called 1,1 filters) as described in
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Reference 2 and in the Appendix. These filtéfs requlire a
minimum of data storage 1n the computer, and are easy to
implement. The final velocity 1s fhe fllter output plus the
computed integral of gravity (in each coordinate).

6. If 1t 1s deslred to smooth position, the accelera-
tion may now be integrated a second time, subtracted from the
position (the position should be delayed by one cycle to allow
for delays in the integration) and smoothed in a 0,0 fllter
(Appendix and Ref. 2). At the output of the filter, the
integrated accelerations are added along with the output of
the 1,1 filter multiplied by 1/2(T-At), where T is the smoothing
time and At 1s the interval between measurements. For most
radars, the blas errors are large enough to make 1% unprofiﬁ-
able to smooth position, because most of the blas error 1s
not removable by smoothing a single pass position. Posltion
smoothing will not be discussed in any detall in this
memorandum.

III. Error Components

Numerbus approximaﬁions are made in thls section to
simplify computing the errors, but it 1s not intended that
the actual operational procedure described in the previous
sectlon have the same omissions. For exampie, the effects of
earth's rotation will be neglected here since it does not af-
fect the magnitude of the smoothing errors. It must be In-
cluded in all of the coordinate rotations actually performed,

however, or else a very large error will be lncurred.
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Most radars measure in the familiar range-azimuth-
elévation coordinate system., However, 1t will be simpler if .
1t 1s assumed that the radar measures positions in standard sphericai
coordinates, 1llustrated in Figure 5, where 6 = -A; and
® = 90°-E. A lower case "r" will be used for range to be
conslistent with standard notation for spherical coordinates,
The inertial coordinéte system assumed wlll be the x-y-z co-
ordinates shown in Figure 5 translated to the center of the
earth. The rotation of the earth, which is a very small ef-
fect for the length of time a satellite 1s 1n view of a
station, wlll be neglected in the following analysis (although
it must be considered in actually smoothing the data). The
coordinate system of Figure 5 1s therefore also an inertial
coordinate system, which 1s completely equlvalent to the
earth-centered system for velocltles and accelerations (since
the two coordlnate systems differ dnly by translations),
Positlion errors in the radar-centered coordinate system are
identical to the erroré in the earth-centered system. In
general, no distinction wlll be made between these two co-
ordinate systems unless only one of them can be used, such as
in computing gravitational accelerations. If a coordinate
1s earth-centered, the subscript "c¢" will be used.

The rectangular coordinates are related to the

radar coordinates by the familiar relations
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r cos 6 sin ¢

r sin 6 sin ¢ (2)

e
]

Z =r cos @

The position vector 1n rectangular coordinates will be called
R, while the position vector in radar coordinates will be ﬁh.
Thus,

X r
R = y 3 .RTR = ) (3)
2z ¢

The same notation will be used for velocities: R =V, and

o

R, =7V, We then have by differentiation of (2)

R R’
V=27 (4)
where A 1s the matrix
cos 6 sin ¢ -r 8ln € sin ¢ r cos 6 cos @
A =] sin 6 sin ¢ r cos 6 sin ¢ r sin 6 cos 9| (5)
cos @ 0 -r sin'm

The accelerations in rectangular and radar coordinates are

related by

a =A Vﬁ + A Eﬁ (6)
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where the matrix A 1s the derivative of (5) given by

-6 sin 6 sin ¢ -r, sin 6 sin ¢ r cos 6 cos o]
+d cos 6 cos ¢ -rf cos 6 sin ¢ -r® sin 6 cos ¢
-r¢ sin 6 cos ¢ -re¢ cos 6 sin ¢
) & cos 6 sin ¢ r cos 6 sin o r, sin 6 cos ¢
A =] +9 8ln 6 cos ¢ -ré sin 6 sin ¢ +r0 cos 6 cos ¢
+rd cos 6 cos @ -r® sin 6 sin ¢
-9 sin ¢ 0 -r sin ¢
N . -rd cos ¢ J
(7)

It 1s now posslible to express mathematically the steps
described in the preceding sectlon. In the i1deal case, the radar
measures a sequence of positions, ﬁh(t) + —h, where ﬁh repre-
resents the nolse in each coordinate. These positions are
transformed to rectangular, earth-centered coordinates ﬁ;,
and the gravitational acceleration 1s computed‘from Equa-
tion (1). The integral of this acceleration, which will be
called v;, 1s subtracted from first differences in R, and
the result 1s smoothed., The “"gravitational velocity" va is
‘then added back in, giving the true veloclty plus an error
due to the nolse, which may be computed using the standard
filter formulas, There is no dynamic error in the procedure
in the 1deal case. |

Now consider the effect of blases. Suppose the
radar coordinates as measured are a quantity ﬁ; = §h+ﬁh+§h,

where the vector Eh is given by




Ar
BR =] A8
Ag

and Ar, A8, and Ag are unknown bilases 1ndependent of time.

The position in rectangular coordinates 1is now
Rt = R + A(Np+BR) (9)

where R 1s the true position in rectangular coordinates as

a funcﬁion of time. The "A" matrix transforms both nolse

and blas to rectangular coordinates if 1t 1s assumed that

these small errors are approxlimately equal to the differentials
of position. The gravitational acceleration 1s now computed

as a function of ﬁ; (which is just R! translated to the center

of the earth if earth's rotation is neglected), so
T, = [3(R") at (10)

as contrasted to the true component

v, = Ja(R) at (11)
The velocities computed with the blased data are

V' =T +AB, +7 (12)
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where Vk are the components due to nolse. The nolse part,
Vﬁ, will be dropped for the moment and_considered later,
slnce methods for computing the error due to noise are fairly
standard, If only dynamic components are considered, Equa-

tion (12) can be rewritten as
Vt=vo+va+ABR, ' (13)

where Vg.is the initial velocity. The quantity to be smoothed,
which will be called Vh, has Equation (10) removed from it,
glving

— 1 b .
Vg =V, + <va—va> + A B | (14)

Ideally, of course, Vd is Jjust equal to the constant velocity

75. If each component of Va is now passed through identical

1,1 filters, the output is (Ref. 2)

ar = Va

<
NE

d (o 5 . == _ == - =
4 Et—(vd)=vd+§|:a(R) —a(R')+ABR:[ (15)
where vﬁf denotes the filter output, and T is equal to the
smoothing time., After the "gravitational velocity" is added
back in, the output of the filter (and the final answer),
Vf, 1s

Vf=vo+va+EVD, (16) .
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where EVD 1s the dynamic error in velocity, given by
- . =, = —_—r —
Ep = A B, + 2[5(R) - &R +§BR:[ (a7)

The nolse error (which was neglected iIn the previous para-
graphs) 1s given by

6 2
= e— (] » 18
T3fc N (28)

o2
VN
where o%N is the.variance of the output error in each coor-
dinate and 0§ is the varlance of the input in each coordinate
(after transformation to rectangular coordinates), assuming

(as 1s customary) that the noise in range, angle, and eleva-
tion are independent, normal, uncorrelated sources with Markoff

distributions having a corner frequency-fc. The smoothing time

1s T in Equation (18). .
gefore tinding the optimum filter, it 1s necessary

to estimate the dynamlc error given in Equation (17).vaach
-of the three terms in that equation will be determined separ-
ately in the following paragraphs. It should be noted that,
because the first term in (17) is not muitiplied by the
smoothing time of the fllter, that term plays no part 1in the
filter optimilzation, but i1s Just an error added on to the
error in the filter output. The three parts of (17) will be
evaluated in the order in which they appear in that eqﬁation,

starting with the A B term.
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If the various elements of the matrlx A are compared
with the coordinate transformations of Equation (2), it may be

seen that an equilvalent way of writing A is

x/r -y x(9+90°)
A=|y/r X y(9+90°) (19)
z/r 0 z(@+90°)

Similarly, A may be written as

prara

w/rxi/o? =3 *(9490°) |
A = &/r—yf'/r2 X ¥(9+90°) - (20)
2 /p-z8/1° 0 Z(g+90°) |

(The symmetry becomes more apparent if -y 1s written as x(€+90°)

and x 1s written as y(6+490°).) The error in R in vector form 1is
A Bp = U Ar + ugr sin ¢ A6 + u,r Ao , (21)

where ﬁ;, Ee, and E& are unit vectors in the r, 6, and ¢ direc-

tions respectively. An examination of the elements of (20) re-
veals thé followlng facts:

1. Azimuth bilases (determined by the second column) corre-
spond to a rotation of coordinates by the amount of the blas.
The maximum error causéd by an azimuth blas in the A §ﬁ term 1is

i1s therefore the, where Vh is the horizontal component of

velocity. The maximum is attained 1if Vh is in eilther the x or

y directions.
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2. Elevation biases (determined by the third columﬁ)
are similar 1in nature to a coordinate rotation, but the ro-
tated coordinate system keeps changing. However, since the
three elements in the third column of (20) are the three
components of veloclty in an orthogonal coordinate system,
the maximum error caused by an elevatlon blas in the A Eﬁ
term 1s VAg, where V is the magnitude of the total velocity.
This maximum would occur if the total velocity'were in the
directlion of one of the rotated axes of the third column
of (20).

3. The range sltuation 1ls conslderably more complicated,
but fortunately the range terms in A Eﬁ are negligible, for
practical radars. The maximum value that any of the terms of
the first column of (20) can have is 2V/r, which would occur
1f the obJect belng tracked was flying along one of the coor-
dinate axes directly towards the radar. The total blas error
1s then 2VAr/r. If the minimum value of r is 100 miles, and
the blas corresponds to 10 feet; then 2Ar/r 1s at least
3.3 x 1072, while the angle blases are of the order of 1074,

| In most actual cases of tracking an object in earth
orbit, the vertical velocity (2Z) i1s quite low compared to the
horizontal velocity, so that Vy, = V. We will therefore assume

that the maximum value of A BR in any coordinate 1s

V/hp> + A6° , which is a slightly pessimistic estimate.
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This component of error will be called the "velocity
rotation error", and will be denoted by EyR*

Evaluation of the difference a(R) - a(R') 1s some-
what more straightforward., Recaling (8),.§' =R + Bﬁ. Re-
placling differentlials by derivatives gives

_ a - -
A% = A(R) - a(R') =Z S Ry R -C Ay (22)
J
where the elements of C are given by
kR _,R
————13_°1g , 14
R .
y ol
2
3chi _ k‘*B 1=
i 5 -— 4 -
| R, 1”2 | Rl

and the subscripts "¢" indicate that the coordinates must be
measured from the center of the earth. The differentials of
position, however, ére the same for coordinates measured from
the center of the earth or from the radar, since the two co-
ordinate systems are parallel (because the rotation of the

earth was neglected). (Even 1f the rotation were considered
however, the effect would be negligible, since the earth ro-

tates only 1/4 of a degree per minute.) The largest error in
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any one coordinate occurs if one of the axes is in the direc-
tion of the radius vector, If we assume all of the bilas error
from either azilmuth or elevation is in the same coordinate

direction (the range error is negligible), then the error due

to this source is

a = I—%—-——g [rA(angle)] (24)
where A(angle) 1s the bias in azimuth or elevation. Since
these two blases are equal for most radars, the distinction
is not important. 1In (23), "r" is measured from the radar.

Equation (23) 1s also approximately equal to (for low earth
orbits) |

_ 2grA(Angle)
2 | R, |

(25)

where "g" 1s the acceleration of gravity at the earth's fur-
face. Thls component will be called "acceleration error",
denoted by Ea‘

The term X Eﬁ may be evaluated relatively easily.
The derivatives of the second ang third columns of A, from
equation (20), are obviously the components of acceleration
in rectangular coordinates, and are therefore limited to

the value "g". The errors due to angle blases are therefore
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Just "g" times the bias error. It 1s easier to evaluate the
range term by'examining (21), where 1t may be seen that the

range component of X Eﬁ 1s equal to

S Tar = (LE, T, A (26)

where ¥ 18 the angle in the plane contalning the orblt and
the tracker, and E@ is the corresponding unit vector, For
all practical purposes, this has the value V2/r, since the
second term in (26) has "g" as 1ts maximum value. The total

error due to this component 1s therefore

2
X B, = G&-"%‘ + g (86%+ng%)1/2 (27)

This component will be called the acceleration rotation
error, € p.
IV. Filter Optimization

Formulas for the nolse error and the dynamic error
were computed in the previous section. If Aw = A92+A@2 rms =
total angle blag error, and ow 1s its standard deviation, then
the dynamic and noise errors computed may be summarlized in the

following equations:



(28)

The total error 1s given by equation (17). If (17) 1is dif-
ferentiated to determine the value of smoothing time T which

glves minimum error, the result is found to be

T, = 2.36(At)1/5(oN/cD)2/5 | (29)

opt
where °D is the rms dynamic error. This equation 1s plotted
in Figure 3. The varlance at the minimum 1s therefore

°§pt - vaoi + 2.30(At)2/5 og/5 03/5 (30)

The right-hand part of this equation (that i1s, the error ex-
cluding the velocity rotation error) is plotted in Figure 4.
It 1s not pragtical to include the veloclty rotation.error

in the same curve as the rest of the error, because the rota-
tion errors depends only on angle error, whlle the remainder
of the dynamlc error 1s a comblnation of both angle and range

error, Figure 1 gives the total error as a function of smoothing
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time for a case of particular Interest to the Apollo program.
The error sources are listed 1in Table 1. The veloclty rota-
tion error has been.included in the total error on an rms
basis. While this procedure 1ls not exactly corréct, gince
part of the remaining error is due to angles and is corre-
lated with the veloclty rotation error, this procedure seems
the most reasonable one to follow. In any event, the‘velocity
rotation error by far dominates the net error, For the cases
considered in Figure 1, this component amounts to 4.2 feet
per second.

In order to use the formulas developed here, it 1s
necessary to assume that the object belng tracked stays at
some "average" distance from the radar, and Flgure 1 is
plotted in the cases when this distance 18 one hundred and
five hundred miles. It may be observed that the error does
not depend very strongly on this assumed average slant range,
and sufficlent accuracy is probably achieved if the slant
range at closest approach 1s used (which will tend to give a
pessimistic estimate of dynamlc error and an optimistic es-
timate of noise error). In any application, of course, there
is usually no need to include data after the optimum smoothing
time has been reached, but since)the error does not lincrease
very rapidly after this time, from an operatlonal standpolnt
i1t may be deslirable to include all of the tracking data. The

degradation is almost negligible, and the operational procedures
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would then not have to depend on the geometry of a partlicu-

lar pass.

V. System Applications

In the introduction i1t was polnted out that the
procedures described in this memorandum are well-sulted to
determining orbits at an isolated statlion such as a tracklng
ship. A small digltal computer wlth a modest memory (or
even possibly an analog computer)vcould easily perform the
computations indicated, and compute the orbital elements
from the positions and velocitles. The six elements and a
time reference could then he transmitted to a central polnt
over a communications link with a very low capaclty compared
to the capaclity required to transmit several minutes of
tracking data, This technlque could also be used profltably
to obtaln an 1nitiai estimate of the orbit, uéing data
obtained at the first tracking station. This estimate, plus
an estimate of the covariance matrix, can then be used as
the initial state of a standard orblt--determination program.
Comparison of the accuracles obtalned in Figure 1 with those
obtainable by a standard program for the same amount of
tracking (Ref. 3) show that the polynominal smoothing tech-
nique gives 20 to 30 per cent more accuracy than a differential-
correction method. However, the differential-correction

method uses large amounts of data more efficlently than the
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polynominal method. Thus it seems reasonable to use poly-
nominal smoothing to measure small arcs of orbits, and

differential-correction methods to measure large areas.
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Appendix

Growing Polynomial Filters

The "memory" of a filter is the time span during
which input data affects the output. Thus i1f the memory of
a filter 1s T seconds, all input data collected during the
previous T seconds (and only that data) affect the output.
The memory of a "growing" filter increases with time. Thus
if to 1s the time at which filtering action started, and t
is the present time, then the smoothing time 1s T = (t-to).
The "0,0" filter discussed in the text makes a least-squares
fit of a constant to position data perturbed by white noise,
where the fit extends over the smoothing time of the filter.
The "1,1" filter makes a least-squares fit of a constaﬁt to
first differences of such position data, Thus the 0,0 fil-
ter measures position and the 1,1 filter measure velocilty.

The most attractive operational features of grow-
ing filters are their simplicity and economlcal use of com~-
puter storage. In particular, they do not require storage
of all the data points for the past T seconds; they preserve
thls data by storing a few appropriate quantities. The for-
mulas for these fllters are below.

The notation below 1s that measurements of posi-
tion X, are made At seconds apart. The input to the fllter
1s ., and the (smoothed) output 1is v . The subseript "k"



specifies the input data point, so -» { k £ =, The subscripf
"n" 418 referenced to the start of the filter, so 0 < n < T/At,
That is, n is zero when the filter 1s "turned on", and is
always equal (in terms of data points) to the memory of the

filter. The quantity "a" is the result of an intermediate

calculation.

A. 0,0 filter

B. 1,1 filter
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